Giải bài tập trang 13 bài 5 bảng căn bậc hai Sách bài tập (SBT) Toán 9 tập 1. Câu 50: Thử lại kết quả bài 47 bằng bảng bình phương…
Câu 50 trang 13 Sách Bài Tập (SBT) Toán 9 Tập 1
Thử lại kết quả bài 47 bằng bảng bình phương.
Bạn Đang Xem: Giải bài 50, 51, 52 trang 13 SBT Toán 9 tập 1
Xem Thêm : Giải bài 1, 2, 3 trang 116 Vở bài tập Toán 5 tập 2
Gợi ý làm bài
\({x^2} = 15\)
Tìm ô có giá trị gần với 15 trong bảng bình phương ta được ô 14,98 và ô 15,05
* Với ô 14,98 tra bảng ta được \(x \approx 3,87\). Đây là kết quả gần đúng nhưng hơi thiếu.
* Với ô 15,05 tra bảng ta được \(x \approx 3,88\). Đây là kết quả gần đúng nhưng hơi thừa.
Xem Thêm : Giải bài 138, 139, 140, 141 trang 33, 34 SBT Toán lớp 7 tập 1
Thực hiện tương tự cho các bài còn lại.
Câu 51 trang 13 Sách Bài Tập (SBT) Toán 9 Tập 1
Thử lại kết quả bài 48 bằng bảng căn bậc hai
Xem Thêm : Giải bài 1, 2, 3 trang 116 Vở bài tập Toán 5 tập 2
Gợi ý làm bài
Sử dụng bảng căn bậc hai, thử lại các kết quả bằng cách tra bảng căn bậc hai cho các kết quả vừa tìm được.
Câu 52 trang 13 Sách Bài Tập (SBT) Toán 9 Tập 1
Chứng minh số \(\sqrt 2 \) là số vô tỉ
Xem Thêm : Giải bài 1, 2, 3 trang 116 Vở bài tập Toán 5 tập 2
Gợi ý làm bài
Giả sử \(\sqrt 2 \) không phải là số vô tỉ. Khi đó tồn tại các số nguyên a và b sao cho \(\sqrt 2 = {a \over b}\) với b > 0. Hai số a và b không có ước chung nào khác 1 và -1.
Ta có: \({\left( {\sqrt 2 } \right)^2} = {\left( {{a \over b}} \right)^2}\) hay \({a^2} = 2{b^2}\) (1)
Kết quả trên chứng tỏ a là số chẵn, nghĩa là ta có a = 2c với c là số nguyên.
Thay a = 2c vào (1) ta được: \({\left( {2c} \right)^2} = 2{b^2}\) hay \({b^2} = 2{c^2}\)
Kết quả trên chứng tỏ b phải là số chẵn.
Hai số a và b đều là số chẵn, trái với giả thiết a và b không có ước chung nào khác 1 và -1.
Vậy \(\sqrt 2 \) là số vô tỉ
chinese.com.vn/giao-duc
Nguồn: Trung tâm Ngoại ngữ ILC - Blog Giáo dục
Danh mục: Giải bài tập